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Abstract. For systems of one-component interacting oscillators on ad-dimensional lattice,d > 1,
whose potential energy besides a large nearest-neighbour ferromagnetic bilinear term contains a
small general translation-invariant term, the existence of a ferromagnetic long-range order for
two-valued lattice spins, equal to the sign of the oscillator variables, is established with the help
of a Peierls-type contour bound. The Ruelle superstability bound is used to derive the contour
bound.

1. Introduction and main result

Let us consider two systems of one-dimensional oscillators on thed-dimensional latticeZd ,
d > 1 with the potential energies depending on oscillator variables, labelled by a set3

with finite cardinality|3| and with free boundary conditions, i.e. the case when there are no
oscillators in3c = Zd\3,

U(q3) =
∑
x,y∈3

ux−y(qx, qy) +U ′(q3)

ux−y(qx, qy) = δ|x−y|,1
[

1
2(u(qx) + u(qy))− gqxqy

] (1.1)

U(q3) =
∑
x∈3

2d(u(qx)− gq2
x ) + 1

2g
∑

x,y∈3,|x−y|=1

(qx − qy)2 +U ′(q3). (1.2)

Hereqx is the oscillator coordinate taking a value inR, qX = (qx, x ∈ X), the one-particle
potential (external field)u is a bounded from below even polynomial of degree degu = 2n,U ′

is an even translation-invariant function such thatU satisfies the superstability and regularity
conditions,|x| is the Euclidean norm of the integer-valued vectorx, δx,y = 1, x = y;= 0, x 6=
y.

Let us rewrite the expression for the potential energy (1.1) with the interaction part
represented in a translation-invariant form, using the equalityqxqy = 1

2[q2
x + q2

y − (qx − qy)2]
and the fact that a lattice sitex has 2d (or 2d − 1) nearest neighbours ifx 6∈ ∂3, i.e. it does
not belong to the boundary of3 (or x ∈ ∂3),

U(q3) =
∑
x∈3

2d(u(qx)− gq2
x ) + 1

2g
∑
x,y∈3
|x−y|=1

(qx − qy)2 +U ′(q3)−
∑
x∈∂3

(u(qx)− gq2
x ).
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Let 〈 〉3, 〈 〉 denote the Gibbs average for the system confined to3 and the system in the
thermodynamic limit, i.e.3 = Zd , respectively,

〈FX〉3 = Z−1
3

∫
FX(qX) e−βU(q3) dq3 =

∫
FX(qX)ρ

3(qX) dqX

ρ3(qX) = Z−1
3

∫
e−βU(q3) dq3\X Z3 =

∫
e−βU(q3) dq3.

Here the integration is performed overR|3| andρ3 are the correlation functions. Byρ we will
denote the correlation functions in the thermodynamic limit.

For several classes of ferromagnetic systems, differing from (1.1) and (1.2) by boundary
terms, or systems with the nearest-neighbour (NN) pair interaction, which are included in the
systems (1.1), the following Peierls-type (contour) bound was derived in [BF, FL]:〈 ∏

〈x,x ′〉∈0
χ+
x χ
−
x ′

〉
3

6 e−E|0| (1.3)

whereE is an increasing function ofβ independent of3 , 0 is a set of nearest neighbours,|0|
is the number of nearest neighbours in0,

χ+
x = χ(0,∞)(qx) χ−x = χ(−∞,0)(qx)

whereχ(a,b) is the characteristic function of the open interval(a, b).
If one putssx = signqx , then taking into account thatχ+(−)

x = 1
2[1 + (−)sx ] one obtains

4〈χ+
x χ
−
y 〉3 = 1 + 〈sx〉3 − 〈sy〉3 − 〈sxsy〉3.

Since the systems are invariant under the transformation of changing signs of the oscillator
variables, we have

〈sxsy〉3 = 1− 4〈χ+
x χ
−
y 〉3.

Now in order to prove the ferromagnetic long-range order (LRO) for the spinssx , one has to
show that the average of the right-hand side of the equality is strictly less than1

4. This can be
proved with the aid of the following lemma [GJS, FL].

Lemma 1.1. If the bound (1.3) holds ande−E is sufficiently small then there exist positive
numbersa, a′ such that

〈χ+
x χ
−
y 〉 6 a′e−aE. (1.4)

So, if one shows thatE can be made arbitrary large while increasingg or β, then the
LRO for the above spins will be proved.

In [BF] the derivation of (1.3) is elegant and is based on the application of the Griffiths
and Jensen inequalities. In [FL] it is derived with the aid of a chessboard bound following
from the reflection positivity of NN interaction (see, also, [BW, Sh, Si]).

In this paper we prove the ferromagnetic LRO with the help of (1.3) for the systems in
which the interaction is neither ferromagnetic nor NN, but is essentially ferromagnetic for
sufficiently largeg (see remark 6).

We establish (1.3) for the simplest even polynomialu(q) = ηq2n + u1(q), degu1 6 n,
with the help of the Ruelle superstability bound [R] and show thatE in (1.3) is positive and
growing for increasingg, or more precisely

E = e0 − ln
(
4
√

2πee0
)− E0 e0 =

[
gn(ηn)−1

]1/(2n−2)
(1.5)
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whereE0 depends ong, β and is a bounded function ofg, found from the superstability bound
(for the rescaled and translated correlation functions).e0 is the minimum of the simplest
polynomial one-particle rescaled potentialu0

g(q) = 2d(g−nηq2n − q2).
The proposed technique is based on precise knowledge of how the constant, definingE0

in the superstability bound, depends on the potential energy (theorem 2.1). It is inspired
by the technique used for ferromagnetic quantum oscillator systems with the potential
energy almost coinciding with (1.2) forn = 2 andU ′, expressed through an infinite-range
quadratic translation-invariant pair ferromagnetic potential, in [AKR]. In this paper a small
parameter, appearing in the one-particle potential, is not associated with the magnitude of NN
ferromagnetic interaction.

Our approach stresses the necessity of considering a large-magnitude NN ferromagnetic
interaction (see remark 5).

Let us put‖C‖1 =
∑

x |Cx |, where the summation is performed over thed-dimensional
lattice andC is a complex-valued function onZd .

Theorem 1.1.Let the potential energyU(q3) of the one-component oscillator system be given
by (1.1) and (1.2), whereu(q) = ηq2n+u1(q), u1(q) =∑[n′/2]

s=1 u1
,sq

2s , n′ 6 n, u1
,s ∈ R, n > 1,

with [l] being the integer part ofl.
Also letU ′ be a translation-invariant and an even function such that the superstability

and regularity conditions hold for it

U ′(q3) > −
∑
x∈3

[
Bv0(qx) +B ′

]
∣∣W ′(qX1;qX2

)
∣∣ = ∣∣U ′(qX1∪X2)− U ′(qX1)− U ′(qX2)

∣∣
6
∑
x∈X1
y∈X2

(v0(qx) + v0(qy))9
′
|x−y| ‖9 ′‖1 <∞

v0(q) =
n0∑
s=1

gls q2s n0 < n

whereB,B ′, 9 ′|x| > 0 do not depend ong, oscillator variables and3; ls 6 0 for non-positive
U ′ in the regularity condition forU ′; ls < s for s > 1 andl1 6 1 only for non-negativeU ′.

Then there is the ferromagnetic LRO for the spinssx for sufficiently largeg: g � 1, i.e.
〈sxsy〉 > 0.

Sincesx are scale invariant and their average is not changed after rescaling of oscillator
variables, we can deal with the variables rescaled byg−1/2 and the potential energyUg,

Ug(q3) =
∑
x∈3

ug(qx) + 1
2

∑
|x−y|=1
x,y∈3

(qx − qy)2 +U ′(g−1/2q3)− (2d)−1
∑
x∈∂3

ug(qx) (1.6)

where

ug(q) = 2d(u(g−1/2q)− q2) g > 1.

The rescaled expression for (1.2) does not contain the last term in the right-hand side of
(1.6).

The correlation functions generated byUg will be denoted byρg.
The main idea of the proof originates from the inequality (g > 1),〈 ∏

〈x,x ′〉∈0
χ+
x χ
−
x ′

〉
3

6
(
4
√

2πee0
)|0|

e−e0|0|〈eQg,0 〉3 (1.7)
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wheree0 is a growing function ofg, the expectation value is determined byρg and

Qg,0(q3) =
∑
〈x,x ′〉∈0

Qg(qx, qy)

Qg(qx, qy) = 1

e0

{
(qx − qx ′)2 + 4

3(|q2
x − e2

0| + |q2
x ′ − e2

0|)
}
.

Here we have used the inequality

χ+(qx) χ
−(qx ′) 6 4

√
2πee0 e−e0 exp{Qg(qx, qy)]} e0 > 1. (1.8)

Theorem 1.1 will be proved if we prove the following lemma.

Lemma 1.2. Let the conditions of theorem 1.1 be satisfied. Also lete0 be given by (1.5). Then
there exists a bounded functionE0(g) on the interval(1,∞) such that

〈eQg,0 〉 6 e|0|E0. (1.9)

In the next section we will give the proof of this lemma. Proofs of lemma 1.1 and
equation (1.8) are standard (see [AKR, FL, GJS]). For the convenience of readers we give the
proof of (1.8) which is easier to read since it is adapted to simpler systems.

2. Lemma 1.2 via a superstability argument

Changing the variablesqx → qx − e0 in the integral in the right-hand side of (1.7) and using
the translation invariance of the Lebesque measure we obtain

〈eQg,0 〉 =
∫
ρ(q0 + e0) exp{Qg,0(q0 + e0)} dq0 q0 = (qx, qy; 〈x, y〉 ∈ 0)

Qg,0(q0 + e0) 6
∑
〈x,x ′〉∈0

[
10

3e0
(q2
x + q2

x ′) +
8

3
(|qx | + |qx ′ |)

]
.

(2.1)

The polynomialQ becomes bounded ing if it is translated bye0. As a result, we have to
prove that the correlation functions, translated bye0, in the limit of growingg satisfy the usual
superstability bound.

It is not difficult to check that ife0 is given by (1.5) then

u0
g(q) = 2d(ηg−nq2n − q2) = 2dn−1[e−2n+2

0 q2n − nq2].

From this we immediately deduce that

u0
g(q + e0) = pg(q) + bq2 − b′ b = 2dn−1(n(2n− 1)− n)

b′ = 2d
n− 1

n
e2

0

wherepg is a bounded-from-below polynomial ine−1
0 andq (the linear term proportional to

e0 is absent)

pg(q) = 2dn−1
2n∑
s=3

s!(2n− s)!
n!

qse2−s
0 .
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The following equalities are true:

g−s/2es0 = (ηn)−s/2(n−1)g−N

N = 1

2

[
s − sn

n− 1

]
= 1

2(n− 1)
[s(n− 1)− sn] = − s

2(n− 1)

g−s/2es−1
0 = (ηn)−(s−1)/2(n−1)g−N

N = 1

2

[
s − (s − 1)n

n− 1

]
= 1

2(n− 1)
[s(n− 1)− (s − 1)n] = n− s

2(n− 1)

g−n/2en−1
0 = (ηn)−1/2.

Expandingg−s/2(q + e0)
s in powers ofe0 we see that the termg−s/2es0 diverges and the

other terms tend to zero fors < n asg tends to infinity. Fors = n the only term that survives
is the term in whiche0 has the powern− 1, i.e. the term linear inq. So, we have proved the
following proposition.

Proposition 2.1. The following equalities are valid:

lim
g−1→0

(u0
g(q + e0) + b′) = bq2

lim
g−1→0

(u1
g(q + e0)− u1

g(e0)) = 0 n = 2k + 1

lim
g−1→0

(u1
g(q + e0)− u1

g(e0)) = u1
,nq n = 2k.

Now we have to establish the accurate superstability and regularity conditions for the
potential energy translated bye0.

First, we consider the potential energy (1.2).

Ug(qX + e0) =
∑
x∈X

ug(q + e0) + 1
2

∑
|x−y|=1
x,y∈X

(qx − qy)2 +U ′g(qX). (2.2)

From the condition of theorem 1.1 we derive, taking into account the bound(qx − qy)2 6
2(q2

x + q2
y )

Ug(qX + e0) >
∑
x∈X

ũg(qx)− Bg(X) (2.3)

where

ũg(q) = (ug(q + e0) + b′ − u1
g(e0))− Bv0

g(q) v0
g(q) = v0(g−1/2q)

Bg(X) = Bg|X| Bg = b′ +B ′ − u1
g(e0).

For non-negativeU ′ (2.3) holds with

ũg(q) = ug(q + e0) + b′ − u1
g(e0).

Let us put

U∗g(qX) = Ug(qX + e0)−
∑
x∈3

u∗g(qx) +Bg(X)

u∗g = ũg − vg vg(q) = q2 + v0
g(q).

(2.4)

Then the following superstability condition holds:

U∗g(qX) >
∑
x∈X

vg(qx). (2.5)
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The regularity condition also holds

|W∗g(qX1; qX2)| = |U∗g(qX1∪X2)− U∗g(qX1)− U∗g(qX2)|
6 1

2

∑
x∈X1
y∈X2

9|x−y|[vg(qx) + vg(qy)] X1 ∩X2 = ∅ (2.6)

where9|x| = 2δ|x|,1 +9 ′|x|.
Inequality (2.6) is derived from the equality

W∗g(qX1; qX2) = W ′g(qX1; qX2) + 1
2

∑
|x−y|=1
x∈X1,y∈X2

(qx − qy)2.

We have used, once more, the inequality(qx − qy)2 6 2(q2
x + q2

y ).
Applying the equalities|X| − 1 times, following from the regularity condition (2.6),

U∗g(qx, qX) 6 U∗g(qx) +U∗g(qX) + |W∗g(qx; qX)|
6 U∗g(qx) +U∗g(qX) + ‖9‖1vg(qx) +

∑
y∈X

9|x−y|vg(qy)

∑
x∈X

∑
y∈X′∈X

9|x−y|vg(qy) 6 ‖9‖1
∑
y∈X′

vg(qy)

we obtain

U∗g(qX) 6
∑
x∈X

Ũg(qx) Ũg(q) = U∗g(q) + ‖9‖1vg(q) (2.7)

where

U∗g(q) = ug(q + e0) + b′ − u1
g(e0) +B ′ − u∗g(q) = B ′ +Bv0

g(q) + vg(q).

For a positiveU ′ the termBv0
g(q) has to be dropped in the last relation.

All the inequalities (2.5)–(2.7) are important for the derivation of the superstability bound
for the correlation functions.

The analogues of (2.5)–(2.7) can be obtained for (1.1) by redefining slightly the above
functions, putting forX ⊆ 3
Ug(qX) =

∑
x∈X

ug(q) + 1
2

∑
x,y∈X
|x−y|=1

(qx − qy)2 +U ′g(q3)− (2d)−1
∑

x∈∂3∩X
ug(qx). (2.8)

It is easy to check, taking into account the inequality

(2d)−1

∣∣∣∣ ∑
x∈∂3∩X

(ug(qx + e0) + b′ − u1
g(e0))

∣∣∣∣ 6 (2d)−1
∑
x∈X
|u0
g(qx + e0) + b′ − u1

g(e0)|

that (2.5)–(2.7) will hold if in (2.4) we put

Bg(X) = Bg|X| + (2d)−1|X ∩ ∂3|[b′ − u1
g(e0)] (2.9)

and add to the previous̃ug(q), Ũg(q)(U∗g(q)) the terms

−(2d)−1|ug(q + e0) + b′ − u1
g(e0)| d−1|ug(q + e) + b′ − u1

g(e0)|
respectively.

We see that the regularity condition is the same for both cases andvg(q) is not changed.
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Bg(3) diverges ifg tends to infinity sinceb′, u1
g(e0) diverge. We can addBg(3) to

the potential energy since the expression for the correlation functions is not changed after
this.

Let us put

ρ3∗g(q3) = exp

{
β
∑
x∈3

u∗g(qx)
}
ρ3g (q3 + e0).

Thenρ3∗g are expressed in terms ofU∗g after adding toUg the terms large ing independent
of oscillator variables

ρ3∗g(qX) = Z−1
∗3

∫
e−βU∗g(q3)µ∗g(dq3\X)

Z∗3 =
∫

e−βU∗g(q3)µ∗(dq3)
(2.10)

where

µ∗g(dqY ) = exp

{
−β

∑
x∈Y

u∗g(qx)
}

dqY .

As a result of the superstability and regularity conditions forU∗g the following theorem
is true [R].

Theorem 2.1.Let the conditions (2.5) and (2.6) hold for a positive polynomialvg andu∗g
such that the measureµ∗g is finite. Then for arbitrary0 < 3ε < 1, r > 0 for the correlation
functions defined by (2.10), the following (superstability) bound is valid:

ρ3∗g(qX) 6 exp

{
−
∑
x∈X

[
β(1− 3ε)vg(qx)− c(I−1

0u∗g , Iu∗g )
]}

(2.11)

wherec is a continuous function,

I0u =
∫
|q|6r

exp{−β[Ũg(q) + u(q)]} dq

Iu =
∫

exp{−β[(1− 3ε)vg(q) + u(q)]} dq

whereŨg is given by (2.7).

We formulated the Ruelle theorem in a special form in order to indicate the dependence
of c ong (c also depends on‖9‖1, r).

Equation (2.1) and theorem 2.1 yields

〈eQg,0 〉 6 e|0|E0 E0 = E0 + e∗(g) e∗(g) = 2c
(
I−1

0u∗g , Iu∗g
)

E0 = 2 ln
∫

exp

{
−β(1− 3ε)vg(q)− βu∗g(q) +

10

3e0
q2 +

8

3
|q|
}

dq.
(2.12)

It is clear that

(1− 3ε)vg(q) + u∗g(q) = ũg(q)− 3εvg(q).

As a result, equation (1.3) holds withE given by (1.5). From the conditions of theorem 1.1
it follows thatE0 and e∗ exist in the limit of vanishingg−1, sinceũg(q) − 3εvg(q) tends
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to the strictly positive quadratic polynomial that is necessary for existence ofE0, Iu∗g . Here
proposition 2.1 plays a significant role and the following relations are used:

lim
g−1→0

ũg(q) = bq2 lim
g−1→0

vg(q) = kq2

b = 4d(n− 1) > 8 3ε < 1 (1− (2d)−1) > (1− d−1)b > 4

wherek = 1 forU ′ non-positive andk = 2 forU ′ positive.
The functionsIu, eE

0/2 are uniform limits of sequences of continuous bounded functions
which are integrals over intervals [0, n]; that is, they are also continuous and bounded.
Lemma 1.3 is proved. Application of lemma 1.1 completes the proof of theorem 1.1.

Proof of (1.8). Let e0 = λ−1 > 1.

χ+
x χ
−
x ′ = [χ(0,1/2λ)(qx) + χ(1/2λ,∞)(qx)][χ(−∞,−1/2λ)(qx ′) + χ(−1/2λ,0)(qx ′)]

6 χ(1/2λ,∞)(qx)χ(−∞,−1/2λ)(qx ′) + χ(0,1/2λ)(qx)χ(−1/2λ,0)(qx ′)

+ χ(0,1/2λ)(qx) + χ(−1/2λ,0)(qx ′). (2.13)

If qx > 1/2λ, qx ′ 6 −1/2λ then λ(qx − qx ′) > 1 and for an arbitrary integerM
[λ2(qx − qx ′)2]M > 1. As a result of this inequality and the Cauchy formula

χ(1/2λ,∞)(qx)χ(−∞,−1/2λ)(qx) 6 [λ2(qx − qx ′)2]M 6 λM
{

dM

dξM
eλξ(qx−qx′ )

2

}
(ξ = 0)

= M!

2π i
λM

∫
|ξ |=1

eλξ(qx−qx′ )
2 dξ

ξM+1
.

Taking the absolute value of the last integral and passing to polar coordinates (dξ is treated as
the first-order differential form onS1) we derive the bound

χ(1/2λ,∞)(qx)χ(−∞,−1/2λ)(qx) 6 M! λMeλ(qx−qx′ )
2
.

In the same way we obtain

χ(0,1/2λ)(qx) 6
[

4
3(1− λ2q2

x )
]M = λM{ dM

dξM
e

4
3λξ(λ

−2−q2
x )

}
(ξ = 0)

= M!

2π i
λM

∫
|ξ |=1

e
4
3λξ(λ

−2−q2
x )

dξ

ξM+1

χ(0,1/2λ)(qx) 6 M! λMe
4
3λ|q2

x−λ−2|

χ(−1/2λ,0)(qx) 6 [ 4
3(1− λ2q2

x )]
M 6 M! λMe

4
3λ|q2

x−λ−2|.

Substituting these inequalities into (2.13) we obtain

χ+
x χ
−
x ′ 6 4M! λMeλ[(qx−qx′ )2+ 4

3 (|q2
x−λ−2|+|q2

x′−λ−2|)] . (2.14)

LetM = [λ−1], i.e the integer part ofλ−1, then with the help of the inequalities

n! 6
√

2πn (ne−1)n M 6 λ−1

it follows that

M! λM =
√

2πM(Me−1)MλM 6
√

2πλ−1[λ−1]MλMe−[λ−1] 6
√

2πeλ−1e−λ
−1
.

Here we have used the fact that the difference of a number and its integer part does not
exceed the unit and the inequalityλ−1 > 1. Equation (1.8) is proved. �
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Remarks

1. Lemma 1.1 is true for arbitrary dimensiond > 1. Though its proof is given ford = 2 in
[FL] the main idea of the proof remains the same in a general case.

2. If one adds to (1.1) and (1.2) the non-translation-invariant term
∑

x,y∈3,|x−y|>1Cx−yqxqy
then is not difficult to apply our arguments and prove that the conclusion of theorem 1.1
holds if

|Cx−y | 6 C0
|x−y| > 0 ‖C0‖1 <∞.

3. The system characterized by (1.2) can be considered as basic for our approach. It is
clear that it is very convenient to deal with and may be considered canonical, since the
one-particle potential in (1.2) has minima which may be associated to pure phases of the
Gibbs system.
There is an interesting problem in proving theorem 1.1 for more general external potentials
u. The polynomialu0

g has two real symmetric minima. So we expect that there are only
two pure phases in the corresponding Gibbs system.e0 is an approximate (asymptotic)
minimum ofu from theorem 1.1 and this fact may mean that one needs to find such a
minima for more general one-particle potentials instead of thebona fideminima.

4. Theorem 1.1 proves the existence of a phase transition for the case whereU ′ is expressed
through a pair (special) potential, since it is known that in this case in the high-temperature
phase there is an exponential decrease of correlations [K]. The (approximate) critical
temperature may be determined from the bound (1.4) finding the temperature, depending
ong, for whicha′ = ∞. It can be shown that there exists a constanta0 < 1 such that this
equality occurs if e−E = a0. From this the critical temperature can be found.

5. The magnitude of NN interaction plays an exceptional role in the proposed approach since
it vanishing automatically implies a vanishing of the spin two-point function for NN sites.
This means thatE in (1.3) has to depend on the magnitude of the NN interaction, tending
to zero together with it. So, one should always rescale by the magnitude (in an appropriate
power) all the variables, when starting to derive the Peierls-type contour bound using (1.8)
with e0 depending on it.

6. Essentially ferromagnetic interaction may be characterized by the property that the
ferromagnetic configuration, consisting of the coordinatee0 (a minimum or an approximate
minimum of a one-particle potential) at each lattice site, is more favourable than the
associated antiferromagnetic (staggered) configuration, consisting of the coordinatee0 at
the even sublattice and−e0 at the odd sublattice for sufficiently largeg, i.e. the potential
energy on the former configuration is less than on the latter. This property follows from
the superstability condition for the rescaledU ′g in the formulation of theorem 1.1 and the
fact that the growth ing of g−se2s

0 , s < n, is slower thane2
0 (see proposition 2.1). In other

words, the ferromagnetic NN part of the potential energy suppresses antiferromagnetic
ground states for sufficiently largeg.
We believe that ferromagnetic LRO occurs in systems that are slightly more general than
essentially ferromagnetic.
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