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Abstract. Forsystems of one-componentinteracting oscillatorssddienensional latticed > 1,

whose potential energy besides a large nearest-neighbour ferromagnetic bilinear term contains a
small general translation-invariant term, the existence of a ferromagnetic long-range order for
two-valued lattice spins, equal to the sign of the oscillator variables, is established with the help
of a Peierls-type contour bound. The Ruelle superstability bound is used to derive the contour
bound.

1. Introduction and main result

Let us consider two systems of one-dimensional oscillators od-ienensional latticeZ?,

d > 1 with the potential energies depending on oscillator variables, labelled by & set
with finite cardinality|A| and with free boundary conditions, i.e. the case when there are no
oscillators inA¢ = Z4\ A,

Ugr) = Y try(gr4y) + U'(qn)
xX,yeA (11)

Uy (@r. qy) = 8e—y 2[5 (u(qx) + u(qy)) — gqxqy]

Ulga) =y 2d(u(g:) —gqD)+38 Y.  (6—4¢)°+U'qn). (1.2)

XeA x,yeA,|x—y|=1

Hereq, is the oscillator coordinate taking a valuelingy = (¢,, x € X), the one-particle
potential (external fieldy is a bounded from below even polynomial of degreewdeg2n, U’
is an even translation-invariant function such thiasatisfies the superstability and regularity
conditions |x| is the Euclidean norm of the integer-valued veatof, , = 1, x = y; =0, x #
y.

Let us rewrite the expression for the potential energy (1.1) with the interaction part
represented in a translation-invariant form, using the equality = %[qf + qf — (g —qy)?]
and the fact that a lattice sitehas 2/ (or 24 — 1) nearest neighbours.if & 9 A, i.e. it does
not belong to the boundary @f (orx € dA),

Uga) =Y 2d(u(g,) —gq2) +38 Y (qx —q)*+U'(qn) — Y (u(gy) — gq?).

xeA x,yEA XEIA
lx—y|=1

0305-4470/99/407039+10$30.00 © 1999 IOP Publishing Ltd 7039



7040 W | Skrypnik

Let ()4, () denote the Gibbs average for the system confined &amd the system in the
thermodynamic limit, i.eA = Z4, respectively,

<FX>A = ZI_\lf FX(QX) eiﬁU(qA) dQA ZfFX(qX)pA(qX) qu

PA(CIX) = le/e_ﬂu(ql\) qu\X ZA = /e_ﬂU(‘h\) qu

Here the integration is performed oveY*' andp” are the correlation functions. Bywe will
denote the correlation functions in the thermodynamic limit.

For several classes of ferromagnetic systems, differing from (1.1) and (1.2) by boundary
terms, or systems with the nearest-neighbour (NN) pair interaction, which are included in the
systems (1.1), the following Peierls-type (contour) bound was derived in [BF, FL]:

< I1 x;x;> <etl (1.3)
{ A

x,x")ell

whereE is an increasing function ¢f independent ofs , I' is a set of nearest neighbou|E|
is the number of nearest neighbourdin

Xr = X©,00)(qx) Xy = X(—00,0)(qx)

wherey, » is the characteristic function of the open intergal b).
If one putss, = signg,, then taking into account that'~ = 1[1 + (—)s,] one obtains

4<X;Xy_>A =1+ (sc)a — (sy)a — {5x5y)a-

Since the systems are invariant under the transformation of changing signs of the oscillator
variables, we have

<sxSy>A =1- 4<X;X;)A-

Now in order to prove the ferromagnetic long-range order (LRO) for the spjrane has to
show that the average of the right-hand side of the equality is strictly Iesé‘ﬁthﬁnis can be
proved with the aid of the following lemma [GJS, FL].

Lemma 1.1. If the bound (1.3) holds and~* is sufficiently small then there exist positive
numbersz, a’ such that

(Xix,) <ae (1.4)

So, if one shows that can be made arbitrary large while increasiggor 8, then the
LRO for the above spins will be proved.

In [BF] the derivation of (1.3) is elegant and is based on the application of the Griffiths
and Jensen inequalities. In [FL] it is derived with the aid of a chessboard bound following
from the reflection positivity of NN interaction (see, also, [BW, Sh, Si]).

In this paper we prove the ferromagnetic LRO with the help of (1.3) for the systems in
which the interaction is neither ferromagnetic nor NN, but is essentially ferromagnetic for
sufficiently largeg (see remark 6).

We establish (1.3) for the simplest even polynomia}) = ng?* + u'(q), degu* < n,
with the help of the Ruelle superstability bound [R] and show #at (1.3) is positive and
growing for increasing, or more precisely

E=¢—1In (4\/27'[6‘60) — Ep €0 = [g” (nn)fl]l/(zniz) (1.5)



LRO in lattice systems of linear oscillators 7041

whereEg depends og, 8 and is a bounded function @f found from the superstability bound
(for the rescaled and translated correlation functions).is the minimum of the simplest
polynomial one-particle rescaled potentidly) = 2d(g~"ng® — ¢?).

The proposed technique is based on precise knowledge of how the constant, dgfining
in the superstability bound, depends on the potential energy (theorem 2.1). It is inspired
by the technique used for ferromagnetic quantum oscillator systems with the potential
energy almost coinciding with (1.2) far = 2 andU’, expressed through an infinite-range
guadratic translation-invariant pair ferromagnetic potential, in [AKR]. In this paper a small
parameter, appearing in the one-particle potential, is not associated with the magnitude of NN
ferromagnetic interaction.

Our approach stresses the necessity of considering a large-magnitude NN ferromagnetic
interaction (see remark 5).

Let us put|C|l1 = Y, |C«|, where the summation is performed over thdimensional
lattice andC is a complex-valued function dof’.

Theorem 1.1. Let the potential energ¥/ (¢, ) of the one- component oscillator system be given
by (1.1) and (1.2), whene(g) = ng? +u*(q), u'(q) = an /2 ulg®,n’ <nu eRon>1,
with [/] being the integer part df '

Also letU’ be a translation-invariant and an even function such that the superstability
and regularity conditions hold for it

U'(qa) ==Y [Bv%(qy) + B']

xeA
\W/(CIXl;qxz)i = |U'(gx,ux,) — U'(gx,) — U'(qx,)|
< Y 0% +0%g )V, ¥/l < o0
xEXl
YEX2

0
n
@ =) g*  n®<n
s=1

whereB, B’, “I’\/x| > 0do not depend op, oscillator variables andy; /; < 0 for non-positive
U’ in the regularity condition fol/’; I, < s for s > 1 and/; < 1 only for non-negativé/’.

Then there is the ferromagnetic LRO for the spipgor sufficiently largeg: ¢ > 1, i.e.
(sxsy) > 0.

Sinces, are scale invariant and their average is not changed after rescaling of oscillator
variables, we can deal with the variables rescaleg By? and the potential energy,,

Ug(gn) = D g +3 Y (90 —q)° +U'(g %) — @)™ ) ug(go) (1.6)
xeA \x yl=1 xedA
x,yeA

where

ug(q) = 2du(g*?q) — ¢® g>1

The rescaled expression for (1.2) does not contain the last term in the right-hand side of
(1.6).

The correlation functions generated Gy will be denoted byp,.

The main idea of the proof originates from the inequality 1),

<ﬂ XX > (4v/2meeq) eI (elr) (L.7)
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whereeg is a growing function og, the expectation value is determined gyand

Qg,F(CIA): Z Qg(%rv Qy)

(x,x")el’

1
Q:(@x. ) = —-{(@: - 4:)% + 37 — e§l + g7 — gD}
Here we have used the inequality

X (@) x " (qv) < 4y 2meege exp{Q,(qx, g,)]} e > 1. (1.8)
Theorem 1.1 will be proved if we prove the following lemma.

Lemma 1.2. Let the conditions of theorem 1.1 be satisfied. Alsedéke given by (1.5). Then
there exists a bounded functidfy(g) on the interval(1, co) such that

(e2ery < llFo, (1.9)

In the next section we will give the proof of this lemma. Proofs of lemma 1.1 and
equation (1.8) are standard (see [AKR, FL, GJS]). For the convenience of readers we give the
proof of (1.8) which is easier to read since it is adapted to simpler systems.

2. Lemma 1.2 via a superstability argument

Changing the variableg, — ¢, — eg in the integral in the right-hand side of (1.7) and using
the translation invariance of the Lebesque measure we obtain

(€%r) = /p(qr +eo) eXP{ Q. r(gr +eo)} dgr gr = (qx, qy; {(x,y) € T)
10 8 (2.1)
Qer(gr+e) < Y. [—(qf +a0) + (g + |qx/|>].

(x,x")el’ 360

The polynomialQ becomes bounded ig if it is translated byey. As a result, we have to
prove that the correlation functions, translate@gyin the limit of growingg satisfy the usual
superstability bound.

Itis not difficult to check that ity is given by (1.5) then

ug(q) = 2d(ng "¢ — %) = 2dn" ey ™ *¢*" — ng?].

From this we immediately deduce that

Uuy(q +eo) = pg(q) +bg® —b'  b=2dn"'(n(2n — 1) —n)
-1
b =2d" el

wherep, is a bounded-from-below polynomial h’gl andg (the linear term proportional to
eg is absent)

Pe(q) = Zdnflzsl(zn_s) e
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The following equalities are true:

g—x/ZeB — (nn)—s/Z(n—l)g—N

e e U R
2 T n—1]T 20—tV M=o

g—x/Zeéfl — (nn)—(x—l)/Z(n—l)g—N
ir (s —Dn 1 n—s
N=Z|s— — ) —(s—Dn] = >
21T o1 ] 2Dl =or—
g_n/2€871 — (7’]1’!)_1/2.

Expandingg—*/2(q + eo)® in powers ofep we see that the term—/2¢} diverges and the
other terms tend to zero fer< n asg tends to infinity. For = n the only term that survives
is the term in whicheg has the power — 1, i.e. the term linear ig. So, we have proved the
following proposition.

Proposition 2.1. The following equalities are valid:
lim (ug(q +eo) +b) = bg?
g 1-0
lim (u;(q +eg) — ui(eo)) =0 n=2k+1
g 1-0
Jim (g +eo) —ugleo) =ulg  n=2k.
Now we have to establish the accurate superstability and regularity conditions for the

potential energy translated lay.
First, we consider the potential energy (1.2).

Ug(gx +eo) = ) uglg+eo)+3 D (g — q,)* + Uy(gx). (2.2)
xeX |x—y\)=(l
X,y€

From the condition of theorem 1.1 we derive, taking into account the baund q},,)2 <
2(g7 +q?2)

Ug(‘IX +eg) > Zﬂg(q‘c) - Bg(X) (23)
xeX
where
iig(q) = (ug(q +eo) +b' — uy(e)) — Bvg(q) va(g) = v°(g""?q)
B,(X) = B,|X| By =b'+ B — u(eo).

For non-negativé/’ (2.3) holds with

iig(q) = ug(q +eo) +b' — ug(eo).

Let us put
Usg(gx) = Ug(qx + €0) — ) _ ttug(qs) + By(X)
xeh (2.4)
Uag =g — Vg V(q) = g%+ vP(q).
Then the following superstability condition holds:

xeX
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The regularity condition also holds
|W*g(qX1; qX2)| = |U*g(qX1UX2) - U*g(le) - U*g(qX2)|
<EY Wlve@) +vgg)]  XaNXo =4 (2.6)

XEX]_
yeXa

Where\IlM = 28‘x|,1 + ‘If/x .
Inequality (2.6) is derived from the equality

W*g(le; qu) = Wé(qxlg qxz) + % Z (qx - Qy)z'
=1
X‘Exxli\l)GXZ

We have used, once more, the inequality — ¢,)* < 2(¢2 + ¢2).
Applying the equalitie$X| — 1 times, following from the regularity condition (2.6),

U*g(CIx» gx) < U*g(q.x) + U*g(QX) + |W*g(q,v; qx)|
< Usg(q2) + Usg(gx) + W [110 () + D Wiy v (qy)

yeX
DY Wyvglgy) <NV ) ve(gy)
xeX yeX'eX yeXx’
we obtain
Uig(gx) < Y _Up@)  Ug(q) = Usg(q) + [ Wl104(q) 2.7)
xeX
where

Usg(q) = ug(q +e0) +b' — ui(eo) + B — u,g(q) = B' + Bv(q) + vy(q).

For a positivel/’ the tervag(q) has to be dropped in the last relation.

All the inequalities (2.5)—(2.7) are important for the derivation of the superstability bound
for the correlation functions.

The analogues of (2.5)—(2.7) can be obtained for (1.1) by redefining slightly the above
functions, putting forX € A

Uglgx) = D ug@)+3 > (g —q)*+Uplgn) — @)™ Y uy(qy). (2.8)
xeX lx,ye‘Xl x€edANX
x—y|l=

It is easy to check, taking into account the inequality

d)™*

D (g +eo) +b - u;(eo»‘ < @)Y [ud(gy +eo) + b — (o)l

xedANX xeX
that (2.5)—(2.7) will hold if in (2.4) we put
By(X) = By|X| + (2d) X N OA|[D' — uy(eo)] (2.9)
and add to the previous, (q), U, (q)(Us,(q)) the terms
—(2d) Hug(qg +eo) +b —ugeo)l  d Hug(qg +e + b — ug(eo)l

respectively.
We see that the regularity condition is the same for both cases,&nyis not changed.
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B, (A) diverges ifg tends to infinity since’, ui(eo) diverge. We can ad®,(A) to
the potential energy since the expression for the correlation functions is not changed after
this.

Let us put

Piy(qn) = eXp{ﬁ > u*g(qx)}p;,‘(qz\ + e).
xXeEA
Thenp;‘g are expressed in terms bf,, after adding tdJ, the terms large ig independent
of oscillator variables
,Oi\g(CIX) = Z;Alfeiﬁy*g(q’\)ﬂ*g(dém\x)
(2.10)
Zon = [ €7 dan)

where
Mg (dgy) = eXD{—ﬂ D g (qx)} dgy.
xeY
As a result of the superstability and regularity conditionstfgy the following theorem
is true [R].

Theorem 2.1.Let the conditions (2.5) and (2.6) hold for a positive polynomigbnd u..
such that the measuye,, is finite. Then for arbitrary0 < 3¢ < 1, r > 0 for the correlation
functions defined by (2.10), the following (superstability) bound is valid:

Py (qx) < exp{ — > [BA=3e)v,(g0) — ey, 1,,*3)]} (2.11)

xeX

wherec is a continuous function,

Tou = / exp{— L0, (@) + u(q)]) dg

lgl<r

I, = /eXp{—,B[(l—38)vg(61) +u(q)]} dg

whereU, is given by (2.7).

We formulated the Ruelle theorem in a special form in order to indicate the dependence
of c ong (c also depends oW ||4, 7).
Equation (2.1) and theorem 2.1 yields

(eer) < l'Fo Eo=E%+e.(g) e(9) = 2¢(Io, L,
10 8 (2.12)
E°=2 |n/ expy —B(L1 — 3e)vy(q) — Pusg(q) + =—q° + =gl ¢ dg.
360 3
Itis clear that

(1— 3e)vg(g) +usg(g) = iig(q) — 3evg(q).

As a result, equation (1.3) holds with given by (1.5). From the conditions of theorem 1.1
it follows that E® ande, exist in the limit of vanishingg—?, sincei,(q) — 3ev,(q) tends
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to the strictly positive quadratic polynomial that is necessary for existenﬁé?,%*g. Here
proposition 2.1 plays a significant role and the following relations are used:

H ~ _ 2 : _ 2
g['lfﬂoug(q) = bq g[lmovg(q) = kq

b=4d(n—1) > 8 <1 AL-—2d)™H>A-dHp>4

wherek = 1 for U’ non-positive and = 2 for U’ positive.

The functions,,, €°/2 are uniform limits of sequences of continuous bounded functions
which are integrals over intervals ,[@]; that is, they are also continuous and bounded.
Lemma 1.3 is proved. Application of lemma 1.1 completes the proof of theorem 1.1.

Proof of (1.8). Leteg = A~% > 1.
X X = [x0.1/20) (@) + X1/20.00) (@)1 X (—00.~1/2) (@x) *+ X(~1/21,0)(@x')]
< X(@/2r,00) (@) X(—00,~1/22) (@) + X (0,1/20) (@) X(~1/20.,0) (@)
+ X0.1/2) (Gx) * X(-1/21.0)(qx')- (2.13)

If g. > 1/2x, g < —1/2x thenA(q, — ¢g») > 1 and for an arbitrary integeM
[A2(q: — g»)?]™ > 1. As a result of this inequality and the Cauchy formula

dM
X(1/22.00) (@) X(—o0—1/22) (@) < [A2(qx — q)? M < AM { —emq*q*/)z}(f =0

dgM

— M! M £(qxr—q.)? dS

_me /e" P
[€1=1

Taking the absolute value of the last integral and passing to polar coordinatiesdngated as
the first-order differential form o8') we derive the bound

—g.)2
X(1/22.00) (@) X(—o0—1/20) (qx) < M AMeH@:=a)",
In the same way we obtain

daM -
X012 () < [3(1— )xz%g)]M = ,\M{dé_Me;‘ké(/\ zq”z)}(i? =0
_ M / eirsotgn 9
2mi EM+1

=1
13 M a3rlg2—2172
X©0.1/20)(qx) < M AT e
491,252

X-1/20.0/(qx) <[5 =21 < MraMesHa=r7
Substituting these inequalities into (2.13) we obtain

XIxs < AM! AM @@ —q.)*+ 5 1gZ =22 1+1g% =272D] (2.14)
Let M = [»7Y], i.e the integer part of ~1, then with the help of the inequalities

n! < V27n (ne )" M <At
it follows that
MM = 2n M (Me DM M < V21 MM e 7 < 2mer—Te

Here we have used the fact that the difference of a number and its integer part does not
exceed the unit and the inequality* > 1. Equation (1.8) is proved. O
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Remarks

1. Lemma 1.1 is true for arbitrary dimensign> 1. Though its proof is given faf = 2 in
[FL] the main idea of the proof remains the same in a general case.

2. If one adds to (1.1) and (1.2) the non-translation-invariant %fm, . .1 Cx-y4xqy
then is not difficult to apply our arguments and prove that the conclusion of theorem 1.1
holds if

0 0
ICoey | <CO, >0 [CO1 < oo

3. The system characterized by (1.2) can be considered as basic for our approach. It is
clear that it is very convenient to deal with and may be considered canonical, since the
one-patrticle potential in (1.2) has minima which may be associated to pure phases of the
Gibbs system.

There is an interesting problem in proving theorem 1.1 for more general external potentials
u. The polynomiahg has two real symmetric minima. So we expect that there are only
two pure phases in the corresponding Gibbs systenis an approximate (asymptotic)
minimum of u from theorem 1.1 and this fact may mean that one needs to find such a
minima for more general one-particle potentials instead obtirea fideminima.

4. Theorem 1.1 proves the existence of a phase transition for the caselWheexpressed
through a pair (special) potential, since it is known that in this case in the high-temperature
phase there is an exponential decrease of correlations [K]. The (approximate) critical
temperature may be determined from the bound (1.4) finding the temperature, depending
ong, for whicha’ = co. It can be shown that there exists a constgnt 1 such that this
equality occurs if ef = ag. From this the critical temperature can be found.

5. The magnitude of NN interaction plays an exceptional role in the proposed approach since
it vanishing automatically implies a vanishing of the spin two-point function for NN sites.
This means thak in (1.3) has to depend on the magnitude of the NN interaction, tending
to zero together with it. So, one should always rescale by the magnitude (in an appropriate
power) all the variables, when starting to derive the Peierls-type contour bound using (1.8)
with eg depending on it.

6. Essentially ferromagnetic interaction may be characterized by the property that the
ferromagnetic configuration, consisting of the coordirg{@ minimum or an approximate
minimum of a one-particle potential) at each lattice site, is more favourable than the
associated antiferromagnetic (staggered) configuration, consisting of the cooegiatite
the even sublattice andeg at the odd sublattice for sufficiently largei.e. the potential
energy on the former configuration is less than on the latter. This property follows from
the superstability condition for the rescalg(lin the formulation of theorem 1.1 and the
fact that the growth irg of g*fe(%v, s < n, is slower tharazg (see proposition 2.1). In other
words, the ferromagnetic NN part of the potential energy suppresses antiferromagnetic
ground states for sufficiently large
We believe that ferromagnetic LRO occurs in systems that are slightly more general than
essentially ferromagnetic.
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